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Multiple imputation by chained equations (MICE) has emerged as a leading
strategy for imputing missing epidemiological data due to its ease of imple-
mentation and ability to maintain unbiased effect estimates and valid inference.
Within the MICE algorithm, imputation can be performed using a variety of
parametric or nonparametric methods. Literature has suggested that nonpara-
metric tree-based imputation methods outperform parametric methods in terms
of bias and coverage when there are interactions or other nonlinear effects
among the variables. However, these studies fail to provide a fair comparison
as they do not follow the well-established recommendation that any effects in
the final analysis model (including interactions) should be included in the para-
metric imputation model. We show via simulation that properly incorporating
interactions in the parametric imputation model leads to much better perfor-
mance. In fact, correctly specified parametric imputation and tree-based random
forest imputation perform similarly when estimating the interaction effect. Para-
metric imputation leads to slightly higher coverage for the interaction effect, but
it has wider confidence intervals than random forest imputation and requires
correct specification of the imputation model. Epidemiologists should take care
in specifying MICE imputation models, and this paper assists in that task by
providing a fair comparison of parametric and tree-based imputation in MICE.
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absolute error; MAR, missing at random; MI, multiple imputation; MICE, multiple imputation by chained equations; PMM, predictive mean
matching; RF, random forests.
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1 INTRODUCTION

Dealing with missing data is a necessary reality faced by researchers analyzing epidemiological data. One solution,
multiple imputation (MI), involves filling in the missing data with plausible values multiple times, carrying out the
desired analysis on each filled-in dataset, and combining the results using Rubin's rules.1 MI has become popular for
a number of reasons. First, it gives researchers the ability to perform the imputation procedure in advance so future
analysts can easily carry out their complete-data analysis of choice on the multiply-imputed datasets. Also, when per-
formed correctly, MI produces unbiased estimates and valid inference for data that are missing at random (MAR)
(i.e., in scenarios when the probability of data being missing does not depend on the missing data given the observed
data).2,3

Multiple imputation by chained equations (MICE), also called fully conditional specification, is commonly used to
implement MI.4,5 At each step, imputed values for one variable are drawn from a predictive model conditional on all other
variables. This process cycles through the imputation of each variable until imputations converge. The primary advantage
of MICE is that it is not necessary to specify a joint distribution of all variables. By default, software to implement MICE
includes each variable as a linear predictor in the imputation model with no interactions or nonlinearities considered.
However, it is widely known that the imputation model must be “compatible” with, that is, at least as complex as, the
final analysis model.3,6-9 Therefore, any interactions or non-linear relationships that are estimated in the final analysis
model must be accounted for in the imputation model. Failure to specify a compatible imputation model can result in
biased parameter estimates and invalid inference.6

In some cases, however, it may not be desirable or even possible to include interactions in a parametric imputation
model due to a large number of predictors, small sample size, or highly correlated predictors. In these cases, recursive
partitioning (tree-based) methods are commonly utilized within the MICE algorithm. Tree-based methods such as clas-
sification and regression trees (CART) and random forests (RF) are nonparametric and have been used to model large,
complex data in clinical medicine, genetics, and more.10 The primary advantages of tree-based methods are their abil-
ity to capture complex relationships such as interactions and other nonlinearities as well as their nonparametric nature,
that is, they do not require the user to specify an imputation model.10-12 At each step in the MICE algorithm, values are
imputed for a given variable using a tree built with all other variables as predictors.11 A primary drawback of tree-based
methods is the difficulty of interpreting their results, but this is inconsequential for imputation as interest lies only in
preserving complex data structure to make unbiased parameter estimates and valid inference.

Many have demonstrated the success of tree-based methods for MI.11-13 However, these studies have failed to com-
pare tree-based MICE to MICE using a correctly specified parametric imputation model. In some studies,13 the number of
predictors is too large to include all possible interactions in a parametric imputation model, but in others,12 the selected
parametric imputation model is simply not as complex as the final analysis model. Doove et al.12 selected their para-
metric imputation model based on the default settings for MICE in R, leading to an imputation model that includes
only main effects of each variable while the analysis model also includes an interaction term. Doove et al.12 demon-
strated poor performance of parametric MICE in this case, but this result is expected as it has been well-documented
that biased estimates and low coverage will result from a final analysis model that is more complex than the imputation
model.2,3,6,7

This paper makes a fair and novel comparison of tree-based imputation models to parametric imputation models
in MICE by specifying a compatible parametric imputation model as would be done in practice. We compare perfor-
mance of the MICE imputation methods via simulation, and we present an application of these methods to data relating
hippocampal volume (HV) and age to cognitive function in the Alzheimer's Disease Neuroimaging Initiative (ADNI)
cohort.

2 METHODS

We compared the performance of parametric and tree-based imputation methods via simulation using two data genera-
tion models. For each combination of data generation model and imputation method, the following steps were performed:
data generation, removal of observations based on a MAR mechanism, imputation, regression analysis, and calculation
of bias, coverage, and confidence interval (CI) width for each coefficient. In general, a desirable imputation method leads
to low bias, coverage of at least 95%, and narrow CIs.
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2.1 Data generation

The data generation models represent moderately sized studies containing a continuous outcome and four covariates,
similar to that in Doove et al.12 Scenario 1 represents this setting when there is a true underlying interaction between two
of the covariates, as shown in Equation (1) below.

y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝛽3X3 + 𝛽4X4 + 𝛽intX1X2 + 𝜀 (1)

Scenario 2 represents this setting when there is no true underlying interaction, as shown in Equation (2) below.

y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝛽3X3 + 𝛽4X4 + 𝜀 (2)

For both scenarios, we simulated data for n = 200 subjects. X1, … , X4 are generated by a multivariate normal distri-
bution with E[Xi] = 0, Var(Xi) = 1, Cov(Xi, Xj) = 0.5 for i,j ∈ {1,… ,4}, i≠ j, and 𝜀∼N(0,1). In Scenario 1, we set 𝛽0 = 0 and
𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽 int = 0.3, and in Scenario 2, we set 𝛽0 = 0 and 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 0.317, so that in each scenario 50%
of the variation in y is explained by the predictors.

2.2 Removal of observations based on a MAR mechanism

We induced missingness via a MAR mechanism such that the total proportion of missing data is approximately 50%. In
each scenario, missingness in the outcome and covariates is based on the fully observed X4. Subjects with X4 ≥ 0 have
35% missingness in other variables, and those with X4 < 0 have 65% missingness in other variables, on average.

2.3 Imputation of missing data

Throughout the analysis, we performed MICE using the mice package in R version 3.1.0.4,14 As implemented in Doove
et al.,12 we created 10 imputations for each simulated dataset. Within the MICE algorithm, we applied four imputation
methods: (1) predictive mean matching using default mice settings (PMM-Naive), (2) predictive mean matching (PMM)
with an interaction term in the imputation model (PMM-Int), (3) CART, and (4) RF.

2.3.1 PMM-Naive

To impute for a given subject, PMM first uses a parametric model to identify subjects with similar predictive means, then it
samples one observed value from this group of similar subjects.1 As a parametric method, PMM is generally preferred over
standard regression because it creates imputations from the observed data itself, which maintains data structure such as
skewness and avoids problems such as imputing impossible values.15 The mice function uses PMM as the default paramet-
ric imputation method for continuous variables. The method we call “PMM-Naive” consists of the default implementation
of PMM in mice, which includes only main effects in the imputation model. PMM-Naive corresponds to standard PMM
presented in Doove et al.12

2.3.2 PMM-Int

The only difference between PMM-Int and PMM-Naive is the inclusion of an interaction term in the imputation model
for PMM-Int. To account for an interaction term in the imputation model, some use passive imputation methods,4-6 while
others recommend the just-another-variable method.5,7,16 Using the mice function, there are several ways to specify both
the passive and just-another-variable models. A brief comparison of all passive and just-another-variable implementations
we considered is presented in Supplementary Material A in Appendix S1. For PMM-Int, we included the interaction term
as just another variable and used the default predictor matrix in the mice function since this method performed better
than or equivalent to all other methods considered.
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2.3.3 CART

CART is a tree-based imputation method that does not require specification of an imputation model. In short, at each step
the CART algorithm identifies a binary decision rule based on one predictor variable that partitions the data into two nodes
by minimizing variance of the outcome within each node.17 The tree is grown by continuing this splitting recursively until
reaching a stopping point determined by the tuning parameters.17 Predictions (or in this case, imputations) are made from
the regression tree by identifying the terminal node to which a new subject belongs and sampling from the outcomes in
that node.17 For a more detailed description of the CART algorithm in MICE, refer to Burgette and Reiter.11 We used the
rpart package to implement CART in mice with all default tree-based tuning parameters for CART in the mice function
including a complexity parameter of 10−4 and a minimum of five observations in any terminal node.4,18

2.3.4 RF

The RF imputation method creates multiple regression trees where imputations are a random draw from what would be
the imputed value from each tree.19 To implement RF, variation is introduced in the trees by using bootstrap samples of
the original data combined with random input selection to fit each tree.19,20 Random input selection restricts the possible
predictors on which to split each node to a random subset of all possible predictors.19,20 For a more detailed description
of the RF algorithm in MICE, refer to Doove et al.12 We used the randomForest package to implement RF in mice.4,20 We
created 10 trees in each random forest, which is the default in the mice function.4,13 By default, the number of predictors
considered for splitting at each node is p/3 rounded down to the nearest integer, where p is the number of predictors.4

2.4 Regression analysis

For each of the 10 imputed datasets, we fit a correctly specified final analysis model, and the results are combined using
Rubin's rules.1 For each of the four imputation methods, this leads to a set of point estimates and 95% CIs, one for each
coefficient.

2.5 Calculation of bias, coverage, and CI width

For each coefficient, we computed bias as the estimated coefficient minus the true value. For a single repetition of the
simulation, coverage is 0 if the estimated 95% CI does not contain the true value and 1 if the estimated interval does
contain the truth. Confidence interval width refers to the width of the estimated 95% CI for each coefficient.

Steps 1 to 5 are repeated 10,000 times. To mirror the comparisons made in Doove et al.12 and Shah et al.,13 we report the
mean bias, coverage, and mean 95% CI width across the replications for each of the four imputation methods. Additionally,
we present empirical mean absolute error (MAE) for each coefficient, which is computed as the average absolute bias
over the 10,000 simulation replications. A link to the source code used for this simulation can be found in Supplementary
Material B in Appendix S1.

3 DATA APPLICATION

To demonstrate application of these methods in practice, data were obtained from the ADNI database.21 The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance imaging, positron emission tomography, other biological
markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment and early Alzheimer's disease. Restrictions apply to the availability of these data, which were used under
license for this study. Data are available at adni.loni.usc.edu with the permission of the ADNI.21

For this analysis, we sought to examine the effects of HV and age on cognitive function, allowing for possible interac-
tion between HV and age. Our specific outcome of interest is cognitive function assessed with the modified Alzheimer's
Disease Assessment Scale - Cognition 13-item (ADAS-Cog 13) scale where higher scores indicate greater cognitive

http://adni.loni.usc.edu
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impairment.22 When using a regional volume in the brain such as HV, the literature suggests normalizing the raw vol-
ume to intracranial volume which eliminates the correlation between HV and intracranial volume while not affecting the
association between HV and cognition.23 As such, instead of using the raw HV in our model, we use the normalized HV
calculated from the residuals of a linear model regressing raw HV on intracranial volume.23 ADAS-Cog 13, normalized
HV, and age were all standardized prior to imputation and analysis. Normalized HV and age are approximately normally
distributed, and ADAS-Cog 13 is slightly skewed right. Bivariate relationships between each predictor and ADAS-Cog 13
reveal no concerning departures from linearity. Plots showing the distributions of these variables in the ADNI sample can
be found in Supplementary Material C in Appendix S1.

The full ADNI dataset at baseline includes 1737 subjects, 1479 (85.1%) of which have complete data on HV, age, and
ADAS-Cog 13. The goal of this analysis is to utilize imputation methods to include all subjects in the final analysis while
preserving underlying relationships between the variables of interest. A preliminary complete case analysis revealed that
there may be some evidence of an HV-age interaction (P = .126), so preserving this potential relationship is important in
the analysis. Despite the fact that we do not know the true underlying effects in these real data, we implement PMM-Naive,
PMM-Int, CART, and RF to compare the results that would be obtained using each of these methods. We hypothesize
that PMM-Naive will lead to underestimation of the HV-age interaction while PMM-Int and tree-based methods will be
able to preserve the interaction effect in the final analysis.

4 RESULTS

4.1 Scenario 1

Scenario 1 represents a study of moderate complexity with a true interaction. For this scenario, Figure 1 displays the
distribution of bias across the 10,000 replications, and Tables 1 and 2 display the coverage and average 95% CI width,
respectively, for each imputation method. For the interaction effect, PMM-Naive leads to estimates with higher mean
bias than the tree-based methods, corroborating the findings in Doove et al.12 Further, coverage of the interaction effect
is smallest (only 68.0%) using PMM-Naive. These findings are not surprising, as the imputation model for PMM-Naive
includes only the main effects, ignoring the true underlying interaction. PMM-Int, which correctly includes the inter-
action term in the imputation model, has smaller mean bias and larger coverage (93.3%) for the interaction effect than
the tree-based methods. Thus, for estimating a true interaction effect, including the interaction term in the parametric
imputation model avoids large mean bias and low coverage.

For the main effects, PMM-Int also leads to small mean bias and approximately 95% coverage. However, RF impu-
tation, which leads to greater mean bias than PMM-Int, also attains at least 95% coverage with the narrowest 95% CIs.
At first, this result may seem counterintuitive; however, the 5th and 95th percentiles of the empirical bias distribution in
Figure 1 reveal why it is the case. Across replications of this simulation, the biases of the main effects from the RF method
have a narrower distribution than those from the PMM-Naive, PMM-Int, and CART methods. Thus, despite the fact that
the RF method leads to point estimates with higher mean bias than PMM-Int, it maintains valid coverage for the main
effects with the narrowest CIs. We observed this phenomenon for all main effects in Scenario 1, but as shown in Figure 1,
this phenomenon does not occur for the interaction effect.

Despite the fact that others have previously used mean bias to compare MICE imputation methods,12,13 variability in
the spread of the bias from each replication makes the mean bias a poor summary measure for considering precision as
well as accuracy of the coefficient estimates. A distribution of bias that is centered around 0 but very wide will have lower
mean bias than a narrow but slightly off-center distribution. However, the latter arguably provides better estimation of
the coefficient than the former. Due to this phenomenon, we find it important to report a measure such as the MAE or
mean squared error rather than relying solely on the mean bias for this comparison.

For the main effects, RF leads to smaller MAE than PMM-Naive, PMM-Int, and CART. Assessing the accuracy of
coefficient estimation with MAE allows one to see that, for main effects, RF produces estimates that are more accurate,
have valid coverage, and have narrower 95% CIs than the other three methods.

For the interaction term, PMM-Naive leads to the least accurate coefficient estimation regardless of whether accuracy
is assessed as mean bias or MAE. However, using MAE, PMM-Int no longer appears to have more accurate coefficient
estimates than tree-based methods.

For results in this scenario, we also investigated the selection of tree-based tuning parameters. For CART, we varied
the complexity parameter (cp) from 10−6 to 0.1 and the minimum number of observations in each leaf (minbucket) from
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F I G U R E 1 Scenario 1: Distribution of bias of the estimated coefficients from each imputation model (10,000 replications). Tick marks
indicate the 5th and 95th percentiles. Mean absolute error is shown in parentheses.

T A B L E 1 Scenario 1: Coverage (%) for
each coefficient

Imputation model 𝜷0 𝜷1 𝜷2 𝜷3 𝜷4 𝜷 int

PMM-Naive 90.2 94.2 94.4 95.1a 95.0a 68.0

PMM-Int 94.2 95.3a 95.6a 95.7a 95.6a 93.3

CART 89.4 92.3 92.8 92.8 94.0 85.7

RF 87.1 99.4a 99.4a 99.2a 98.9a 88.0

Abbreviations: CART, classification and regression trees; PMM-Int, predictive mean matching with an
interaction term in the imputation model; PMM-Naive, predictive mean matching using default mice
settings; RF, random forests.
aCoverage ≥ 95.0%.

T A B L E 2 Scenario 1: 95%
confidence interval width for each
coefficient

Imputation model 𝜷0 𝜷1 𝜷2 𝜷3 𝜷4 𝜷 int

PMM-Naive 0.527 0.790 0.795 0.804 0.640 0.421

PMM-Int 0.602 0.827 0.827 0.837 0.676 0.757

CART 0.503 0.740 0.743 0.736 0.587 0.496

RF 0.477 0.635 0.635 0.626 0.548 0.501

Abbreviations: CART, classification and regression trees; PMM-Int, predictive mean matching with an
interaction term in the imputation model; PMM-Naive, predictive mean matching using default mice settings;
RF, random forests.
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1 to 15. We found that cp> 0.01 leads to increased mean bias and decreased coverage for all effects, but the default value
of 10−4 is appropriate. Smaller values of minbucket lead to slightly decreased mean bias, but the default value of 5 seemed
reasonable. For RF, we varied the number of predictors considered for splitting at each node (mtry) from 1 to 4, but it
had very little effect on results in Scenario 1. We did not consider varying the number of trees (ntree) since simulations
in Shah et al.13 suggested that imputation quality is equivalent for ntree = 10 and ntree = 100. Since the performance
of CART and RF could not be notably improved by altering the tuning parameters, we present results using the default
tuning parameters (cp = 10−4, minbucket = 5, mtry = 1). Simulation results for different values of these tuning parameters
can be found in Supplementary Material D in Appendix S1.

The relative performance of these imputation methods does not change based on varying the sample size (n ∈ [100,
1000]), interaction effect size (𝛽 int ∈ [0.1, 0.5]), and number of imputations (m ∈ [10, 50]).

4.2 Scenario 2

Next, we sought to determine if inclusion of the interaction term in the imputation model is detrimental when no true
interaction is present, as in Scenario 2. Under Scenario 2, Figure 2 displays the distribution of bias across the replications,
and Tables 3 and 4 display the coverage and average 95% CI width, respectively, for each imputation method. When
there are no true interactions between the variables in their effect on the outcome, parametric imputation models with
and without an interaction term (PMM-Naive and PMM-Int, respectively) perform very similarly in terms of accuracy of
coefficient estimates (as assessed by mean bias and MAE), coverage, and average 95% CI width. In this scenario, CART
has MAE approximately equal to that of the parametric methods but coverage below 95%. RF has the highest mean bias
but lowest MAE. Figure 2 reveals that the distribution of bias across simulation replicates is much narrower for RF than

F I G U R E 2 Scenario 2: Distribution of bias of the estimated coefficients from each imputation model (10,000 replications). Tick marks
indicate the 5th and 95th percentiles. Mean absolute error is shown in parentheses.
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T A B L E 3 Scenario 2: Coverage (%) for each
coefficient

Imputation model 𝜷0 𝜷1 𝜷2 𝜷3 𝜷4

PMM-Naive 94.7 94.1 94.5 95.1a 95.3a

PMM-Int 94.8 94.7 95.3a 95.2a 95.3a

CART 91.7 92.0 92.1 92.2 93.8

RF 92.6 99.2a 99.0a 99.1a 98.7a

Abbreviations: CART, classification and regression trees; PMM-Int, predictive mean
matching with an interaction term in the imputation model; PMM-Naive, predictive mean
matching using default mice settings; RF, random forests.
aCoverage ≥ 95%.

T A B L E 4 Scenario 2: 95% confidence interval
width for each coefficient

Imputation model 𝜷0 𝜷1 𝜷2 𝜷3 𝜷4

PMM-Naive 0.494 0.792 0.796 0.798 0.638

PMM-Int 0.496 0.801 0.802 0.805 0.643

CART 0.444 0.732 0.731 0.732 0.588

RF 0.431 0.621 0.621 0.622 0.545

Abbreviations: CART, classification and regression trees; PMM-Int, predictive mean matching
with an interaction term in the imputation model; PMM-Naive, predictive mean matching using
default mice settings; RF, random forests.

any other method, which is not captured in the mean bias. Thus, like Scenario 1, MAE appears to be a better measure of
coefficient estimation accuracy than mean bias. When there is no true interaction in the model, RF has the lowest MAE,
highest coverage, and narrowest 95% CIs.

5 DATA APPLICATION

Of the 1737 subjects in the ADNI cohort at baseline, 14.3% were missing information on the normalized HV, 0.8% were
missing the ADAS-Cog 13 score, and age was fully observed. Table 5 shows the results of this analysis after imputation
by each method as well as using complete case analysis. As expected, the effect of HV-age interaction on cognition was
estimated to be much smaller after imputation by PMM-Naive than after imputation by PMM-Int, CART, or RF. Although
this interaction is not significant at the 𝛼 = 0.05 level using any of these imputation models, the notable difference in effect
size between the imputation methods demonstrates the need to appropriately account for interactions in the imputation
model for this analysis.

6 DISCUSSION

In this simulation study comparing parametric and tree-based imputation models within the MICE algorithm, the com-
patible parametric model (PMM-Int) led to estimating the true interaction effect with lower mean bias and higher
coverage than the tree-based methods. However, of the methods considered, RF had the highest coverage, lowest MAE,
and narrowest 95% CIs for all main effects. CART imputation led to coverage below 95% for all effects and thus is not rec-
ommended for use. Application of these imputation methods to data from the ADNI cohort demonstrates that estimation
of the interaction effect in real data can vary greatly based on the choice of imputation method, warranting the need to
understand their relative performance.

Incorrectly specifying the parametric imputation model by omitting the true interaction term (PMM-Naive) resulted
in estimating the interaction effect with the largest mean bias and smallest coverage. This result is also reported by
Doove et al. who claim that tree-based methods preserve the interaction effect better than the standard parametric imple-
mentation of MICE.12 However, the “standard” parametric method in Doove et al. omits the interaction term from the
imputation model then goes on to estimate the interaction in the analysis model.12 While including only main effects in
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Exposure Imputation model Estimate (95% CI) P-value

Normalized HV Complete case −0.619 (−0.666, −0.572) <.001

PMM-Naive −0.608 (−0.653, −0.564) <.001

PMM-Int −0.612 (−0.658, −0.567) <.001

CART −0.610 (−0.654, −0.566) <.001

RF −0.610 (−0.658, −0.563) <.001

Age Complete case −0.099 (−0.145, −0.053) <.001

PMM-Naive −0.087 (−0.130, −0.044) <.001

PMM-Int −0.089 (−0.133, −0.044) <.001

CART −0.088 (−0.131, −0.045) <.001

RF −0.085 (−0.129, −0.041) <.001

Normalized
HV-age
interaction

Complete case −0.034 (−0.079, 0.010) .126

PMM-Naive −0.016 (−0.061, 0.029) .484

PMM-Int −0.039 (−0.090, 0.012) .126

CART −0.032 (−0.075, 0.011) .141

RF −0.028 (−0.071, 0.014) .186

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; CART, classification and regression
trees; CI, confidence interval; HV, hippocampal volume; PMM-Int, predictive mean matching with an
interaction term in the imputation model; PMM-Naive, predictive mean matching using default mice
settings; RF, random forests.

T A B L E 5 Effects on ADAS-Cog 13
from linear regression analysis of the
ADNI cohort at baseline

the imputation model may be the default implementation of MICE in R, it has been well-established that the imputation
model must be at least as complex as the analysis model.3,6-9 As such, a well-informed user of MICE would not implement
the default approach used by Doove et al. when the final analysis model includes an interaction term. In this case, we
argue that the “standard” parametric imputation model would include each effect in the final analysis model, including
the interaction term. This approach, which we call PMM-Int, actually preserves the interaction effect best by providing
higher coverage and lower mean bias of the interaction effect than CART and RF.

Selection of the predictors and the form of their effects to include in the final analysis model is an issue beyond the
scope of this paper, and as such, our recommendations for the imputation model are based on assuming that the final
analysis model is correctly specified. Future research could consider the interplay between misspecification of the final
analysis model and selection of a MICE imputation model. Further, the focus of this paper is on scenarios of moderate
complexity, that is, several correlated variables with a multiplicative interaction. Of course, data could be much larger and
more complex, but this is also beyond the scope of this paper. There are even situations in which it could be difficult or
impossible to include all necessary interactions in a parametric imputation model. For instance, Shah et al. use data from
electronic health records with a large number of predictors and unknown correlation structure.13 In these cases, RF impu-
tation would be preferred since it has the ability to capture complex relationships such as interactions and nonlinearities
without the need to specify an imputation model.

Based on our results, if interest lies primarily in the main effects, or if there are no true interaction effects between the
predictors on the outcome, RF imputation would also be recommended over a parametric imputation model since it led
to estimation of the main effects in our simulation with the lowest MAE, highest coverage, and narrowest 95% CIs. Even
though RF imputation led to the largest mean bias for the main effects, it also had the smallest MAE. This means that even
though RF imputation leads to biased estimates on average, the estimates after RF imputation still tend to be closer to the
truth than other imputation methods. We argue that this makes RF a more accurate imputation method for estimating
the main effects. While others have considered only the mean bias and empirical SD of coefficient estimates, our study
adds the important and novel comparison of MAE of the coefficient estimates for each imputation method. Shah et al.
demonstrated that RF imputation, as opposed to parametric imputation, in MICE produced more efficient parameter
estimates, with efficiency defined by the empirical SD.13 Our findings of low MAE of the coefficients when using RF
imputation are highly related to this finding. However, the use of MAE demonstrates that the coefficient estimates not
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only have low variability, but they are also close to the truth. We recommend the use of MAE or mean squared error to
capture this phenomenon in future studies.

In some scenarios, RF imputation resulted in CIs with higher than nominal coverage. Despite the fact that these
conservative CIs are wider than they need to be, they were still narrower than the CIs that resulted after performing
parametric or CART imputation. Others have also noted the conservative nature of CIs after performing RF imputation
in MICE, and future work could focus on refining RF imputation in MICE to produce even narrower CIs that still attain
nominal coverage.13

Recommendations based on the results of this study are limited to similar types of data. Performance of the impu-
tation methods may differ when the final analysis model takes on different forms such as logistic regression or survival
analysis. Furthermore, tree-based imputation methods may perform poorly when the signal-to-noise ratio is low due to
the increased difficulty in selecting the appropriate variable on which to make splits. Future work should extend to a
more diverse range of data including noncontinuous variables with varying complexity of correlation structure.

We examined the performance of methods when the data are MAR. If data are missing not at random, expert knowl-
edge must be used to inform the imputation procedure, which is beyond the scope of this paper. It is important to perform
analyses examining the sensitivity of results to the assumptions made regarding the underlying missingness mechanism.24

In summary, this paper offers a fair comparison of parametric and tree-based imputation methods within the MICE
algorithm by including a correctly specified parametric model for comparison. To our knowledge, this is the first paper
to compare tree-based imputation in MICE to a parametric model that includes a true interaction effect. If interest lies
primarily in estimation of main effects, we recommend utilizing RF as it leads to the lowest MAE, highest coverage, and
narrowest 95% CIs for the main effects. If interest lies primarily in estimation of an interaction effect, there is a trade-off
between RF and parametric imputation. Both methods have approximately equal MAE for estimating the interaction
effect. PMM-Int has the highest coverage of the interaction effect, but it is at the expense of wide 95% CIs. Importantly,
parametric imputation should only be utilized if there is enough information to ensure that all necessary interaction
terms are included in the imputation model. If one can accept the reduction of coverage for the interaction effect, RF
imputation is recommended as it does not require specification of the imputation model.
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